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t-act down from learning. The second subissue is the av-
erage growth effect (Doorenbos, Tambe, and Newell

Many learning systems must confront the 1992; Doorenbos 1993), in which the system learns so

problem of run time after learning being many rules - none of which individually need be all

greater than run time before learning. This that expensive - that a slow down results.
utility problem has been a particular focus In this article we focus on expensive chunks. The
of research in explanation-based learning. In prior work on expensive chunks demonstrated their
past work we have examined an approach to existence in a number of tasks, ident&fed their czigins
the utility problem that is based on restrict- in the exponential (in the number of rule conditions)
ing the expressiveness of the rule language upper-bound on the cost of matching individual rules,
so as to guarantee polynomial bounds on the and investigated a range of possible restrictions on
cost of using learned rules. In this article the expressibility of the rules that permit polynomial
we propose a new approach that limits the upper-bounds on match cost. The most successful of
cost of learned rules without guaranteeing an these restrictions is untgue-aitributes, in which match
a priori bound on the match process or re- cost is bounded by a linear function of the number
stricting the expressibility of rule conditions. of conditions. Imposition of the unique-attributes re-
By making the learning mechanism sensitive striction disallows object attributes from having more
to the control knowledge utilized during the than one value. Values can be structured objects with
problem solving that led to the creation of the many parts, but they cannot be unstructured sets of
new rule - i.e.. by incorporating such control objects. Figure I-a shows an unrestricted encoding
knowledge into the explanation - the cost of for part of a state in the blocks world. The attribute
using the learned rule becomes bounded by block of object SI is not a unique attribute because
the cost of the problem solving from which it it has three distinct values. Figures 1-b and 1-c show
was learned. two different unique-attribute encodings of the same

structure.

1 Introduction (S I type stae) (SR 4typ su) (SI atypso)
(Sl 4block B1) (SI 4Wblock BI) (Sl AfoCsS B2)
(SI Ablock B2) (BI ^next B2) (BO ^lft B1)

The identification of the utility problem in explana- (SI Ablock B3) (62 Arxt 83) (BI AriSM B3)
nation-based learning (Minton 1988), has prompted
considerable research on how to assure - or at least to 10) W()€)

improve the chances - that learned knowledge which
is intended to speed up system performance will in fact Figure 1: Unrestricted (a) and unique-attributt (b-c)
do so. rather than slow it down. Our own efforts on encodings in the blocks world.
the utility problem have focused on two subissues with
respect to Soar. an architecture that combines gen- Although a number of systems have been successfully
eral problem solving abilities with a chunking mech- recoded into unique-attributes, and reaped significant
anism that is a variant of explanation-based learn- time savings as a result, there are still some outstand-
ing (Rosenbloom, Laird, Newell, and McCarl 1991). ing problems with it. In particular, the encoding rad-
The first subissue is the problem of ezpenasive chunks ically increases the number of rules used in specifying
(Tambe, Newell, and Rosenbloom. 1990W Tambe and some tasks, and may also require many more rules to
Rosenbloom 1990). in which individual learned rules be learned to achieve the same level of coverage (that
are so expensive to use that the system suffers a slow
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is. generality) as was previously attainable by a small sive chunks problem by ensuring that using the learned

number rules. rule takes no more time than was taken by the original

In this article, we propose an alternative diagnosis for search.

the cause of expensive chunks. along with a new ap- This approach is closest in spirit to that taken in (Shell
proach for eliminating expensive chunks that is derived and Carbonell, 1991). In that work, iterative paths
from this new diagnosis. The core idea is to focus found during problem-space search resulted in the ad-
on the relationship betwcen the problem-space search dition of iterative constructs to the macro-operators
upon which the learning is based and the search per- acquired from the search. These iterative macro-
formed. during match, by the rule learned from this operators are then used in a way that guarantees that
problem-space search. In the search of the problem they take the same path followed in the problem space
space, some path - that is. some sequence of oper- Shell and Carbonell claim that their approach solves
ators - is followed that eventually leads to a result. the expensive chunks problem. However, it doesn't
The actual path followed usually depends on meta- completely because not all expensive chunks arise from
level control rules that determine which operators are iteration. Our approach captures the same basic intu-
selected for which states. These control rules should ition, but in a manner that it is both more general
affect only the efficiency with which the result is found, and simpler. It is more general because it captures
and not its correctness. As a result, when a new rule is the factors that determined the entire path, rather
acquired from a trace of this problem solving, the con- than just the iterative portions, and thus handles all
trol rules are not included as part of the explanation of the causes of expensive chunks. It is simpler be-
of the result. This omission, which turns out to also cause it does not require an enhanced macro-language
be the approach taken in PRODIGY (Minton 1993)1, or special purpose mechanisms for detecting iteration.
increases the generality of the learned rules, while it Instead, it simply expands by a small amount the con-
should not affect their correctness.2  tent of the explanation used during learning.

The problem with this approach. however, is that the In contrast to our earlier approaches to expensive
learned rules are not now constrained by the path ac- chunks, this new approach imposes no ezpressibdity I
tually taken in the problem space. and thus can per- limitations on the encoding of tasks. On the positive
form an exponential amount of search even Ahen the side. this means that the problem of expensive chunks
original problem-space search was highly directed (by can be solved without increasing the difficulty of task
the control rules). For example, with suitable con- encoding. On the negative side, this means that no
trol knowledge in the Grid Task (Tambe, Newell. and sub-exponential bound is being imposed on the match
Rosenbloom 1990) it is possible to solve the problem process - if the original rules encoded into the system
of finding a path between two nodes in time that is require exponential matches, then so may the learned
linear in the length of the path. However, the rule rules. We have thus effectively split off the goal of
learned from this search may be so general that, when removing expensive chunks from the related goal of
it matches. it searches over all paths of that length. guaranteeing bounds on the match, and in the process
This rule is quite general. as it can solve any problem found a weaker approach that solves the former but
that has a solution of that length; however, this gen- :,ot the latter, but with no limit on task expressibility.
erality is only obtained at an enormous cost (i.e.. the Despite this result, this new approach is not free of
cost is exponential in the length of the path). problems. One significant problem is that it doesn't

The solution suggested by this diagnosis is to incorpo- specify what to do when decisions in a search are based
rate traces of the control rules utilized in the problem- on lack of knowledge. In such circumstances, the learn-
space search into the explanation of the result. This ing process has no explanation for why a choice was
should enable the match process for learned rules to made, and therefore can acquire rules that are just
focus on just the precursors for the path that was ac- as expensive as those learned by the unaltered learn-
tually followed, and thus ensure that the match pro- ing mechanism. The other significant problem is that,
cess for a learned rule is bounded in complexity by the as with unique-attributes, this approach can lead to
problem-space search from which it was learned. Be- learned rules that are less general than would be ac-
cause the match process runs at a faster rate than the quired by the unaltered learning mechanism. This
problem solving process, this should solve the expen- comes about here, not because of limitations on the

representation, but because additional conditions are
incorporated into learned rules based on control rules

'In Prodigy, selection and rejection rules are included that are now part of the explanation. These conditions
in the explanation, but preference rules are not. Likewise, provide efficiency, but at the cost of eliminating search
Soar currently also includes require and prohibit prefer- that otherwise would allow the rules to apply in more
ences. but not desirability preferences, circumstances.

'In Soar, this actually can at times affect correctness,
but the discussion of this will be postponed to the final
section.

0 0 0 0 0 0 0 0 0
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In the next section we look at this first, lack-of-
knowledge problem in more detail, and identify i.wo opt I
possible solutions. In the subsequent section we F J
present experimental results from using the new ap-
proach to expensive chunks in combination with one of
the proposed solutions to the lack-of-knowledge prob-
lent, in particular, a solution that depends on a novel _/- atato(cPt)
restriction on the expressiveness of the resulting sys-
tem. In the process we will discuss the impact of the ---
second, specialization-of-learned rules problem. The /
final section summarizes and discusses issues for fu-
ture work. opIJTN

* 2 Decisions Based on Lack of
Knowledge 'Ua(O2

In Soar, a real lack of knowledge - as reflected in
an insufficient set of preferences about a decision -

leads to an impasse rather than to a decision. Thus it
might seem that Soar wouldn't suffer from this prob- Figure 3: Problem solving in the Grid Task.
lem. However, it does have a construct - an indiffer-
ent preference - that allows the explicit statement of
indifference among a set of choices. The decision pro-
cedure is then free to select randomly among the in- normally employs the selection problem space, which
different choices. The resulting choice is thus made in contains evaluate operators that can be appli-d to the
such a way that no explanation of the selection among competing task operators. Once generated, these eval-
the indifferent alternatives is possible based just on the uations will be turned into preferences that allow one
initial situation. of the task operators to be selected. However. the sys-

tem has no direct knowledge about which of the four
operators it ought to evaluate first, so without further

M Nf O. -- assistance it would impasse again, and possibly con-
I (sp operat.,r-goto tinue this recursive subgoaling indefinitely. To avoid

I K L (goal <g> Aproblem-space <p> this, one of Soar's general background rules generates
^state <s>) indifferent preferences for the set of evaluate opera-

- -F G"H - (p name• gnid-ask)(<s> at <iocl>n tors. This lets it pick one at random, and begin to
G H (<s ^at 10 Io>)~oclc

(<IocI.> Aconnected <ioc2>) make progress.
Al B (<o> ^name goto-Ioc If. as is often the case, the information about how to

IF 'conne ed ^at <goc 1> No <Ioc2>) evaluate an operator is not directly available, an eval-F ConcAS (<g> ^operator <o>))
(F ,onneced , uation subgoal (to implement the evaluate operator)
(F connected J)
F %confecedG) is created. The task in this third-level subgoal is to

iG 'co nectF) determine the utility of the operator. To do this, it

performs a bit of lookahead search, trying out the task
,• (b) operator (possibly in simulation) on the original task

e2: The Grid Task. state. If the resulting state can be evaluated, then the
subgoal terminates, otherwise the process continues,

recurring on the question of what task operator to ap-
Consider an example from the Grid Task - a problem ply to this new state. Figure 3 shows this search pro-
known to lead to expensive chunks (Tambe, Newell, cess in the Grid Task which continues until the point
and Rosenbloom 1990) - shown in Figure 2-a. The P is reached.
problem is to go from point F to point P. a path of
length four Because point F is connected to four In this overall lookahead search, indifferent preferences
adjacent points, four operators are suggested by rule indirectly determine which path the system moves
operator-goto (Figure 2-b)3 . Since the knowledge re- down, by directly determining which of the operators
quired to choose among them is not directly available are evaluated at each point. However, the rules learned
in productions, an impasse occurs on operator selec- from this search can gather no explanation from the
tion. In the subgoal created for this impasse. Soar indifferent preferences as to why one path was taken

rather than another. Figure 4 shows such a learned'Symbols enclosed in angle brackets are variables, rule. This rule says that if you are at location <11>

4 lmIa i.il~m il l lJ l
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(spchunk-example use of indifferent preferences. Their ability to select
(gcu<n k problemspace<p> ^ <s> randomly among alternatives is then replaced by ex-

"^operator <o> + ̂ desired <d>) plicit default orderings on the alternatives. If there are
(<o> ^name goto-loc Aat <1I> Nto <12>) any substantive reasons why one alternative should be
(<p> Aname grid-path) selected ahead of another, they can be incorporated(<s> ^at <1 I>) (<d> 'at <15>)
(<12> ^connected <13>) (<13> ^connected <14>) into this ordering. To the extent that there are no sub-

(<14> "connected <15>) stantive reasons, an arbitrary ordering can be imposed.

(<g> ^operator <o> >)) The key, though, is that these orderings are generated
explicitly by rules that distinguish among the alterna-

Figure 4: An expensive chunk learned from indifferent tives, and therefore leave behind a trace that can be
choices. used in explaining why one alternative is picked over

the others. This may not provide a -good" explana-
tion, in the sense of capturing a suitable level of gener-
ality to support transfer to related situations; however,

and want to get to jocation <15>, and there is an op- it will at least be sufficient to distinguish the one se-
erator that takes you from <11> to <12>, and there is lected alternative from the others during the match,
a connected path from <12> to <15> (via two inter- and thus to make the resulting learned rules cheap.
mediate points, <13> and <14>), then the operator
is the best choice. This rule is expensive because it For the Grid Task, an arbitrary ordering of the op-
may need to search an exponential number of paths of erators can be assigned according to the direction of
length four to find one that has this property. Even movement. For example, first up, then down, then
if the original problem-space search happened to Io- left, and finally rght. It is important to note that this
cate the correct path by accident on its first try, or ordering is just used in place of the indifferent prefer-
if outside guidance was provided to lead it down the ences on the evaluate operators in the selection space.
correct path, the resulting rule would still incorporate Thus it determines the order in which the operators are
this exponential search. evaluated, but does not dictate an ordering on the task

operators. This latter ordering is still to be learned, as
There are (at least) two possible ways of solving this a new set of control rules, from the lookahead search. *
problem. The first is to alter the learning and match
processes so that they more appropriately reflect the The elimination of indifferent preferences amounts to
semantics of indifferent preferences. Use of an indif- a limitation on the system's expressibility, though of a
ferent preference means that a random selection of a form quite different from those previously investigated.
single path should be made. However, the match al- It also clearly may impact the generality of the result-
gorithm always follows all paths. So, reflecting the ing rules, at least to the extent that arbitrary orderings
semantics of indifference should involve altering the are imposed. As such, it needs to be evaluated, just as
learning and match processes so that use of indiffer- was the unique-attributes restriction, in terms of the
ent preferences during problem-space search yields the trade-offs it provides among expressibility, speed, and
random choice of a single alternative during the corre- generality.
sponding part of the match of the learned rule. If, in
fact, the indifferent preference meant that the system
rcaily didn't care which of the paths was taken, then 3 Experimental Results
any random selection made by the matcher should be
as good as any other. If. however, the indifferent pref- In this section we look at how well the incorporation of
erence actually signified lack of knowledge about the search control into learned rules, in combination with
correct path, and not all paths actually do lead to suc- the elimination of indifferent preferences, compares
cess, then the match will follow one path randomly, with both an unaltered version of Soar and a unique-
and thus will succeed only stochastically. attributes version. The results are all from Soar6 (ver-

This first direction looks pretty interesting. It solves sion 6.0.3), the latest C-based release of Soar (Dooren-the problem without introducing an expressibility lim- bos 1992), which is approximately 10-40 times faster
itation, while at the same time introducing a stochas- than Soar5 (the previous Lisp-based release). The ex-

ticity into the use of learned rules, and a resulting perimental version is just like the standard system,

gradualness in performance improvement that may be except that the explanations upon which new rules

quite useful in modeling human cognition. Hlowever, are based incorporate traces of the control rules that

it requires a significant enough alteration in the basic determined the choices made in problem solving. In

architecture of Soar, that we have decided to first in- particular, the system computes the minimum set of
vestigate a simpler alternative, and leave this one for preferences sufficient to determine each choice that was

future work. made. so that if the set of preferences overdetermines
the choices, the redundant preferences (and their rule

The second way of solving the problem. and the one traces) are pruned from the explanation to make the
underlying the results reported here, is to disallow the created rule as general as possible.

• • •• • •• •



Grid Task Average CPU' Time (sec) 70
Before Learning After Learning .

F -Original I538 24 791
Search control 63 83 1 18 -s sot

I Unique-alttribute 13 82 0 95 . i
0 9

Table 1: Average CPU time in the Grid Task. f ir, + originalSoar6

(, '* search control
o unique-attribute

(sp chunk-search control Grd lwlemss
chunk Gi 6cs

(goal <g> ^operator <r> + 'operator <u> +
^operator <d> odesired <dl> 'stat <s> Figure 6: Number of accumulated chunks in the Grid(<1> ^prionriy 4 ^at <11> 'to < Task.

(<u> ^priority 3) (<d> ^priority) Task.
(<s> ^at <11I>) (<dlI> ^at <18>)

(<12> ^right <13> 'connected <13>
^down <14> ^connected <14>
'up <15> 'connected <15>)

(<13> ^up <16> 'connected <16>
'down <17> 'connected <17>) The second and third rows in Table I show the corre-

1<16> 'connected <1]> 'up <18>) sponding CPU times for the search-control and unique-
--> attributes versions of the Grid Task.4 Both show more
(<g> ^operator <r> >)) than a factor of five reduction in execution time after

(a) learning. In each problem. they show essentially the

same pattern: the time after learning is a small con-
(sp chunk-unique-attribute stant value that is uniformly less than the time before

chunk
(goal <g> 'operator-nght <r> + learning. This implies that both have solved the ex-

^desired <d> 'state <s> pensive chunks problem for this task.(<r> ^at <]I> Nto <12>)
(<s> ^at <lI>) (<d> ^at <IS>) The extra time before learning in the search-control 0
(<12> Aright <13>)(<13> ^up <14>) and unique-attribute versions stems from the increase

(<14> 'up <J5>) in tokens brought about the additional rule conditions
'<g> operator <r>>)) that discriminate among moving directions, as shown

in the conditions of the chunks in Figure 5. These two
chunks correspond to the expensive chunk in Figure 4.

Figure 5: Chunks from search-control and unique- The difference in run times after learning between the
attribute versions. search-control version and the unique-attribute version

in Table I is also due to the extra conditions in the
search-control-version chunks. However, this yields
only a minor effect, as analyzed in (Tambe 1991).

Table I shows the average CPU time per problem (in Figure 6 shows the cumulative number of chunks ac-
seconds) for the three versions, across seven different quired while solving the eight Grid-Task problems.
problems in the Grid Task, both before and after learn- The unmodified version of Soar learned general enough
ing. All of the grid problems used here are searches chunks from the first problem to cover all of the other
for paths of length six: for example, in Figure 2-a, a length-six problems. The other two approaches needed
problem to go from point A to point P is a length- to learn additional chunks for each new problem. In
six problem. For experimental efficiency, the results these problems, both learned the same number of rules
shown here also assume a IOxlO bounded grid instead with the same generality. Although there are addi-
of the unbounded grid in Figure 2-a. The first row tional contraints induced by the extra conditions in
in Table I shows the times before and after learning Figure 5-(a), both chunks in Figure 5 have the same
for the unaltered version of Soar Without including generality in that they describe the same grid path
search control in chunking, or restricting the task rep- followed by the lookahead search to reach the desired
re-sntation. the time after learning is greater than the point, and nothing more than that.
time before learning for all these problems (by an av-
erage factor of 4.61), and for one of the problems it is
more than a factor of nine greater This is true even
though the number of problem solving steps (i.e., de-
cisions) is decreased via learning from 133 to 8, This 'The unique-attribute representation replaces the
extra cost is directly attributable to the large amount multi-attribute ^connected with four distinct attributes
of time spent matching expensive chunks. A up, ^down, ^left and ' right.

• • • •• • •



Eight-puzzie Task Average CPU Time (sec)

Before Learning After Learning

Original II5319759
Search control 5 30 1 55 - -

iinique-attribute 5 -2 1 21 + onginal Soarl
- search contrl

Table 2. Average CPU time in the Eight-puzzle Task. A o unque-atmibte

Table 2 compares these three methods on the Eight-
puzzle Task - another task known to produce expen- : 3 , , ,
sive chunks (Tambe, Newell and Rosenbloom 1990). Eight-puu.zzeblems

In the multi-attribute representation, a state points Figure 7: Number of accumulated chunks in the Eight-
to nine bindings (using attribute 'binding). each of puzzle Task.
which connects a cell from the static 3x3 structure of
the board to a tile. For example, in (B11 cell CI) (B1
Atile Ti). binding BI connects cell C1 to tile TI. A The search-control version required 32 new rules, as
cell points to all of its neighboring cells. For example, compared to 109 new rules for the unique-attribute
(Cl 'next C2).(Cl ^next C3). and so on. version, and 22 new rules for the original version.

The search-control version used here distinguishes op- Thus, for this task, the search-control version is quite
erators by the direction that they move the blank cell: close to the original Soar version, and both show a

down, up, left and right. The unique-attribute rep- distinct advantage over unique-attributes.

resentation removes the multi-attribute binding by Unique-attributes' need here for many new rules stems
numbering it, A bmndingl, A bmndtng2 . A., ^ binding9, from the same source as its large number of initial
and replaces Anext with 4 attributes 'down, ^up. rules, plus the following fact. The search-control ver-
'left and ^right. As shown in Table 2, the time af- sion need not distinguish between values of a multi-
ter learning is less than the time before learning in attribute as long as it doesn't affect the decision that is
the search-control and unique-attribute versions, while based on lack of knowldge, while the unique-attribute
the originai Soar requires more CPU time after learn- version must replace the muti-attribute anyhow. At-
ing As in the Grid Task. both the search-control and tribute A binding in the above Eight-puzzle task is an
unique-attribute versions have eliminated the expen- example of a multi-attribute that doesn't affect the

sive chunks that occur in the unmodified version. The decision based on lack of knowledge.
difference in run times between the search-control ver-
sion and the unique-attribute version stems from the __

same reason as in the Grid Task. 0

The number of rules used to encode the Eight Puzzle in
the three versions tells an interesting story. The orig- ,
inal version of Soar uses 13 rules, the search-control ,S /
version uses 16 rules, and the unique-attributes ver- 0 !
sion uses 93 rules. The small growth in going from ,," 1
Soar to the search-control version stems from the need Z
to differentiate and provide a default order on the do- ,sea ÷ cori,•o
main operitorF If there -e n possible or,-!rators, n-1 : seaidMicoitVoW
additional rules are required. The large growth in the 0 ue-ami'tt 1
unique-attributes version stems from the need to cre- Eig14-puzzie etc"

ate rules for each specialization of a generic attribute Number of chunks in different Eight-puzzle
into a more specialized unique-attribute, In general. if Figure 8pe ntatio-.
there are n tests of multi-attributes in a rule, each with representation.
m possible specializations. th-n the unique-attributes
%ersion will need to substitute mn specialized rules.5  The Eight Puzzle can also be expressed via a differ-

ent set of rules, without the multi-attribute A binding.
Figure 7 shows the cumulative number of chunks Although there is considerable reduction in the num-
learned while solving the nine Eight-puzzle problems. ber of rules, Figure 8 shows that the unique-attribute

version still needs more rules because of the former
effect.

'There are ways to reduce this number by splitting the.e
tests across a sequence of rules, but that approach also has
its own problems

S S 0 0 S 0 0 0 0



4 Summary and Discussion and to quantitative analyses of speed ups and (losses 6
of) generality. Also useful would be a theoretical anal-
vsis of the method, and of its potential to avoid (or

Snique-at tributes solve the expensive chunks prob- lead to) slow downs with learning There is also a sub-
lem by restricting the expressiveness of rules down to tIe issue that needs to be addressed that only occurs
where the match can be guaranteed to run in polvno- when there are more options available at performance
mial (in particular, linear) time This provides strong than at learning time, in particular, if the conditions
assurances about syster performance. but also neg- learned to discriminate anmong the options available at 1
atively ,mpacts task creation and learned-rule gener- learning time are not sufficient to discriminate among
alitv. Here we have proposed and investigated a new these new options. additional match search may be in-
approach - based on including search-control in the troduced. Finally, altering the architecture so as to
explanations upon which new rules are based - that t ro pria te use of cinertpreferences

solvs te exei~ive huns poble. bt no byen- permit the appropriate use of indifferent preferencessolves the expei~sive chunks problem. but not by en- would enable the removal of the one expres~sibility lim-

forcing a fixed computational bound on the match pro- wtatdon th e removalf o f ne o essary lim-

cess. Instead. the complexity of the match of a learned itation that it was found necessary to impose
rule is bounded by the complexity of the search from
which it was learned. This gives up an overall guar- Acknowledgments
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